С. Н. Яицкий¹, д-р техн. наук Л. Л. Брагина², канд. техн. наук Ю. О. Соболь², В. В. Машкин² (¹ПАО Лисичанский стеклозавод «Пролетарий», г. Лисичанск, Украина; ²НТУ «Харьковский политехнический институт», г. Харьков, Украина)

Псспедование коррозии бакоровых огнеупоров при службе в стекловаренной печи

Введение

Обеспечение оптимальных эксплуатационных условий работы стекловаренных печей в течение всей кампании определяет снижение энерго- и трудозатрат, увеличение съемов стекломассы.

Конструкция ванных стекловаренных печей для производства листового стекла достаточно консервативна. На протяжении последних 130 лет эти печи Сименса по-прежнему остаются прямоточными регенеративными с поперечным направлением пламени и торцевой загрузкой шихты и стеклобоя. Вместе с тем, основные показатели их работы изменились весьма существенно: единичная мощность, удельный съем стекломассы с варочной части печи, длительность кампании возросли, удельный расход топлива снизился более чем в десятки раз, коэффициент использования стекломассы увеличился с 0,30—0,40 до 0,85—0,90 [1].

Первоочередная роль в решении этих вопросов отводится получению и внедрению новых огнеупорных материалов с улучшенными эксплуатационными характеристиками. Особое значение для обеспечения высокого качества стекольной продукции имеют состав, свойства и состояние огнеупоров, находящихся в непосредственном контакте с рабочими средами в стекловаренной печи (свод, стены, дно варочной части и т. д.). Наряду с огнеупорами, расположенными в зоне варки, большое влияние на качество стекла оказывают указанные изделия сложной конфигурации, находящиеся в выработочной части, к которым предъявляются высокие требования как по эксплуатационным характеристикам, так и по форме и размерам [2].

Наиболее важное из этих требований — значительная коррозионная стойкость к расплаву стекла, или стеклоустойчивость, характеризуемая скоростью растворения огнеупора

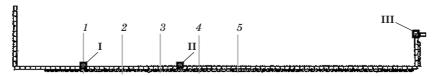
в стекломассе. Она зависит от многих факторов: химического и минерального состава и структурных особенностей огнеупора, химического состава и вязкости стекломассы, величины ее поверхностного натяжения на границе с огнеупорной футеровкой и т. д. [3—5].

В процессе службы огнеупорные детали не только подвергаются интенсивному воздействию расплава стекла, но и испытывают значительные термические и механические нагрузки, что обусловливает повышенные требования к их термостойкости и прочности [6; 7]. Кроме того, используемые в стекловарении огнеупоры должны обеспечивать постоянно заданные параметры стекломассы и ее температурную гомогенность [8]. При взаимодействии огнеупора со стекломассой происходит образование контактного слоя, который характеризуется существенно большей вязкостью по сравнению с вязкостью расплава производимого стекла. В реальных условиях в стекловаренных печах стекольный расплав находится в постоянном движении, смывая продукты реакции стекломассы с огнеупором.

Цель настоящей работы — установление характера разрушения бадделеито-корундовых огнеупоров в стекловаренной печи при производстве листового флоат-стекла на основании результатов петрографических исследований.

Экспериментальная часть

Анализ состояния бадделеито-корундовых огнеупорных материалов кладки ванной печи, в которой осуществлялась варка флоат-стекла (химический состав см. в табл. 1), произведен после ее эксплуатации в течение 5,5 лет в цехе \mathbb{N} 2 ПАО «Лисичанский стеклозавод «Пролетарий». При этом учитывали ее характеристики, параметры технологического режима и конкретные условия службы.


 ${\it Taблица~1}$ Химический состав флоат-стекла, мас. %

SiO_2	Al_2O_3	$\mathrm{Fe_2O_3}$	CaO	MgO	Na ₂ O	SO_3
71,9	0,9	0,06	8,8	4,05	13,9	0,39
± 0,3	± 0,15	± 0,01	± 0,2	± 0,2	± 0,2	± 0,01

Тип печи — регенеративная, с поперечным направлением пламени; производительность — 350 т стекломассы в сутки; топливо — природный газ; коэффициент избытка воздуха

 α = 1,02 ÷ 1,05 в зоне 1-й и 2-й пары горелок, α = 1,2 ÷ 1,6 в зоне 4-й пары горелок; удельный съем стекломассы с 1 м² отапливаемой части печи — 1950—2000 кг/м²; максимальная температура — 1595—1600 °С. Материал стен варочного бассейна — плавленолитые бадделеитовые огнеупоры: бакор 33, бакор 36 и бакор 41. Материал подвесных стен бассейна — бакор и динас, свода — динас, насадок регенератора — циркон, периклаз и хромомагнезит. Интенсивность воздушного обдува наружных стен варочного бассейна — 0,9—1,0 м³/с на 1 м кладки [9].

Для исследования были выбраны образцы бакоровых огнеупоров из трех разных зон стен варочного бассейна печи (рис. 1). Их химический состав и маркировка приведены в табл. 2.

 $Puc.\ 1.$ Схема отбора проб футеровки варочного бассейна: 1,2,3,4,5 — оси порталов горелок; I,II,III — места отбора проб

 $\label{eq:Table} Tabnuцa\ 2$ Химический состав исследованных бакоровых огнеупорных изделий

М		Содержан	ие компонент	ов, мас. %	
Маркировка образца	ZrO ₂ (не менее)	SiO ₂ (не более)	Al ₂ O ₃ (не более)	TiO ₂ /Fe ₂ O ₃ (не более)	TiO ₂ /Na ₂ O (не более)
AZS-33 (I)	33	15	50,45	0,25	1,3
AZS-36 (II)	37	14	47,35	0,25	1,4
AZS-41 (III)	41	12	45,75	0,25	1,0

Исходные размеры бакорового бруса (Д \times Ш \times Т) $1220\times450\times250$ мм. Первый образец AZS-33 (I) (рис. 1) был взят из так называемой окружки бассейна по оси первого портала горелки. Особенностями службы бакора на данном участке бассейна являются: восстановительная среда пламени, протекание твердофазных реакций с образованием расплава на границе газ—расплав—шихта, интенсивные конвекционные потоки стекломассы. Температура пламенного пространства составляла $1480\,^{\circ}$ С, температура стекломассы по дну — $1245\,^{\circ}$ С. В портале первой горелки также имеет место активный унос и испарение легких фракций шихты, которые, оседая на конструктивных элементах огнеупорной футеровки, подвергают ее коррозии.

Второй образец AZS-36 (II) был выбран между 3 и 4 горелками в зоне квельпункта, характеризующейся максимальными температурами в стекловаренной печи. Разрушение огнеупора на данном участке печи вызвано очень низкой вязкостью стеклорасплава ($10-10^2$ Па·с). Здесь же сильно выражены конвекционные потоки стекломассы как прямые и обратные (продольные), так и поперечные. Температура газового пространства составляла 1595-1600 °C, температура стекломассы по дну печи — 1220 °C.

Третий образец AZS-41 (III) взят из углового бруса пережима стекловаренной печи (рис. 1). Его коррозия связана в большей степени с динамической нагрузкой и многократным усилением потока стекломассы, которая, выходя из варочной части (ширина $8400\,\mathrm{mm}$) и проходя в пережим стекловаренной печи (ширина $3700\,\mathrm{mm}$) и далее к выработочному каналу, вымывала данный огнеупор. Температура газового пространства составляла $1410\,\mathrm{^{\circ}C}$, температура стекломассы по дну печи — $1190\,\mathrm{^{\circ}C}$.

Петрографические исследования 1 образцов проводились на полированных шлифах в отраженном свете на универсальном микроскопе NU-2E (Карл Цейс Иена, ГДР) при увеличениях $30-320^{\times}$ и в проходящем поляризованном свете на микроскопе МИН-8 в иммерсионных препаратах при увеличениях $100-320^{\times}$.

Результаты и их обсуждение

Петрографические исследования показали, что в образцах бадделеито-корундовых огнеупоров в процессе службы образовались зоны: наименее измененная, рабочая (реакционная) и корочка из стекла на поверхности образцов (табл. 3).

Наименее измененная зона образца AZS-33 (I) состоит из таблитчатых, лентовидных, часто субпараллельных выделений совместной кристаллизации (застывший эвтектический расплав) корунда и бадделеита различной длины и ширины, а также стеклофазы в промежутках между бадделеито-корундовыми вылелениями.

Бадделеит наблюдается в виде зерен (кристаллов) изометричной (округлой), вытянутой (овальной) и неправильной формы, распределенных среди коротко-призматических и изометричных кристаллов корунда. Стеклофаза бесцветная с по-

 $^{^1}$ Исследования выполнены кандидатом геологических наук Н. Г. Приваловой.

Количественное соотношение фаз в образцах

				Сод	ержание	, об. %	
Образец	Зона	Мощ- ность, мм	Бадде- леит	Корунд	Нефе- лин + стекло	Стекло- фаза	Прочие фазы
AZS-33 (I)	Наименее измененная	> 3	30—35	45—50	_	15—25	
	Рабочая	0,2—1	25—35	1-2	60-70	_	
	Корочка	2—7	_	_	_	100	
AZS-36 (II)	Наименее измененная	2,5—3	30—35	45-50	_	15—25	
	Рабочая	0,03-0,1	25—35	25—35	30-50	_	
	Корочка	1—2	_	_	_	100	
AZS-41 (III)	Наименее измененная	0,5—1,5	38—40	40-45	_	15—20	Муллит — 3—5
	Рабочая	0,02-0,1	30—35	20-25	30-50	_	Муллит — следы
	Корочка	5—15		_	_	100	

казателем светопреломления $N \approx 1,500 \div 1,510$ также имеет вид удлиненных лентовидных выделений.

Поры в наименее измененной зоне изометричные и неправильной формы в стеклофазе и в выделениях совместной кристаллизации (в несколько меньшем количестве). Контакты всех фаз плотные, лишь изредка на контакте стеклофаза — бадделеит + корунд отмечаются трещины.

Образцы AZS-36 (II) и AZS-41 (III) в наименее измененной зоне отличаются несколько более мелкой кристаллизацией как выделений совместной кристаллизации, так и самих кристаллов корунда и бадделеита в этих выделениях, а также стеклофазы (табл. 4). В образце AZS-41 (III) бадделеит изредка наблюдается в виде отдельных зерен и сростков, а в стеклофазе на контакте с корундом встречаются игольчатые кристаллы муллита $(3Al_2O_3 \cdot 2SiO_2)$ до 0.02-0.04 мм в длину.

В образце AZS-36 (II) отмечается несколько меньшее количество пор и трещин, а в образце AZS-41 (III) преобладают поры округлой формы, размер их значительно больший (табл. 4).

Структура исследованных образцов представлена на рис. 2.

Tabauya 4

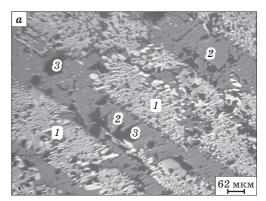
наименее измененной зоне ~ стпуктупы баллеленто-копундовых образнов **Хапактепистика**

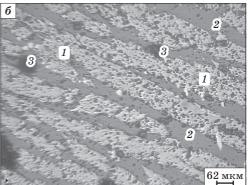
	•	Преобладающие размеры, мм	меры, мм		Ширина	Размер	Размеры, мм
Образец	Сростки совместно	Сростки совместной кристаллизации*	Кристаллы в сростках	і в сростках	выделений стеклофазы [*] .	*:	E
	Длина	Ширина	Бадделеит*	Корунд	MM	110pbi	т рещины
AZS-33 (I)	$\frac{5-15}{16}$	$\frac{0,1\!-\!0,5}{0.6}$	$\frac{0,007-0,04}{0.06}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.02 - 0.1	$0,004-0,04 \\ \hline 0.08$	До 0,2—0,4
AZS-36 (II)	$\frac{0.5-2}{5}$	$\frac{0,05-0,3}{0,5}$	0,008-0,03	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,03-0,06	0,004-0,015	До 0,2
AZS-41 (III)	$\frac{0,2-2}{5}$	$\frac{0.05-0.3}{0.5}$	$\frac{0,008-0,03}{0,06}$	$ \begin{array}{c c} 0.008 - 0.03 \\ \hline 0.006 & 0.004 - 0.010 \\ \hline 0.06 & 0.08 \\ \end{array} $	$\frac{0,04-0,06}{0,08}$	$\frac{0,05-0,2}{0,3}$	До 0,3

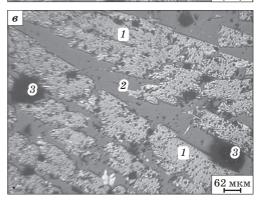
В рабочей (реакционной) зоне образца AZS-33 (I) наблюдается аналогичная структура, однако в сростках (выделениях) совместной кристаллизации сохраняется только бадделеит (рис. 3), который свободно погружен в бесцветную стеклофазу с показателем светопреломления $N \approx 1,510 \pm 0,005$ ис кристаллизацией в ней призматических слабодвупреломляющих кристаллов нефелина $(\beta - Na_2O \cdot Al_2O_3 \cdot 2SiO_2)$, peже — карнегиита (Na₂O·Al₂O₃· $\cdot 2SiO_2$) длиной до 0,03 мм, иногда субпараллельно ориентированных.

В образце из рабочей зоны поры практически отсутствуют.

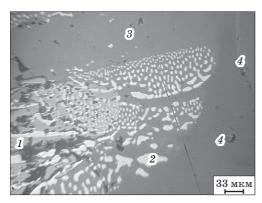
В образцах AZS-36 (II) и AZS-41 (III) корунд в выделениях совместной кристаллизации сохраняется, хотя и в меньшем количестве (табл. 4), а на его месте отмечается стеклофаза с кристаллами нефелина размером 0,004—0,008 мм.


Корочка различной мощности наблюдается на рабочей поверхности всех образцов и представлена бесцветной стеклофазой с показателем светопреломления $N\approx 1,520 \div 1,525$, близким к показателю светопреломления флоат-стекла.


Контакты рабочей зоны с огнеупором и стеклянной


корочкой неровные, извилистые, с проникновением стекла по порам и трещинам.

Таким образом, установлено, что расплав стекла, проникая по порам и трещинам в огнеупор, взаимодействует с компонентами последнего, в первую очередь со стеклофазой бакора и корундом. В результате этого взаимодействия образуется расплав стекла, судя по показателю светопреломления ($N \approx 1,510$), близкий по составу к нефелину, а также кристаллизуется нефелин или карнегиит. Происходит постепенное замещение компонентов огнеупора на более легкоплавкие соединения и оплавление и/или смывание интенсивно измененного слоя.


Данные проведенного анализа подтверждают, что коррозия огнеупоров марок AZS-33, AZS-36, AZS-41 в различных участках стекловаренной печи имеет сходный характер, но при этом есть определенные особенности, связанные с конкретными условиями их службы.

Puc.~2. Общая структура наименее измененной зоны бадделеито-корундовых образцов: $a-{
m AZS-33}$ (I); $\sigma-{
m AZS-36}$ (II); $s-{
m AZS-41}$ (III); $1-{
m Kopyhg}+{
m бадделеит}, 2-{
m Cтеклофаза}, 3-{
m поры и трещины}$

Puc. 3. Структура рабочей (реакционной) зоны бадделеито-корундового образца AZS-33 (I):

- 1 -корунд, 2 -бадделеит,
- 3 стеклофаза, 4 поры и трещины

Заключение

На основании полученных результатов петрографического исследования бакоровых огнеупоров марок 33, 36 и 41 после их эксплуатации в стекловаренной печи для производства флоат-стекла, а также с учетом их относительно продолжительной работы (5,5 лет) можно сделать вывод о необходимости выбора и использования более

качественных огнеупоров, которые бы содержали по минимуму стеклофазу. Кроме того, при строительстве стекловаренной печи следует уменьшить количество швов, не допускать соприкосновения огнеупоров, дающих между собой и при взаимодействии с расплавом легкоплавкие маловязкие эвтектики, и образования мелких трещин при выводке стекловаренной печи.

Библиографический список

- 1. Попов О. Н. Тенденции развития ванных печей в производстве листового стекла / О. Н. Попов, В. Д. Токарев, С. С. Игнатьев // Стекло и керамика. 2008. N3. С. 3—5.
- 2. Коррозионная стойкость огнеупорных изделий из низкоцементных бетонов для стекольного производства / Г. С. Россихина, В. В. Подхолюзин, В. А. Дороганов [и др.] // Стекло и керамика. 2006. № 11. С. 24—27.
- 3. Le Bourhis E. Glass: Mechanics and Technology / E. Le Bourhis. Weinheim: WILEY-VCH GmbH&Co., 2008. 366 p.
- 4. Шаеффер Н.А. Технология стекла: [учебник] / Н. А. Шаеффер, К. X. Хойзнер. Кишинев: CTI-Print, 1998.-280 с.
- 5. Γ улоян O. А. Основные направления повышения эффективности стекловарения / Ю. А. Гулоян // Стекло мира. 2001. \mathbb{N} 3. С. 39—44.
- 6. Ящишин Й. М. Технологія скла: [у 3 ч.] / Й. М. Ящишин. Львів : Бескид Біт, 2004. Ч. 2: Основи технології скляної маси. 2004. 250 с.
- $7.\ \Gamma$ улоян $IO.\ A.\$ Физико-химические основы технологии стекла: [учебн. пособ.] / $IO.\ A.\$ Гулоян. Владимир : Транзит-ИКС, $2008.\$ $736\$ с.
- $8.\,\Pi$ анкова Н.А. Теория и практика промышленного стекловарения: [учебн. пособ.] / Н. А. Панкова, Н. Ю. Михайленко. М. : РХТУ им. Д.И. Менделеева, 2003.-102 с.
- 9. $\mathit{Яицкий}$ С. H . Особенности разрушения огнеупорной футеровки стекловаренных печей при производстве листового стекла / С. Н. Яицкий, Л. Л. Брагина, Н. С. Яицкий // Вісник Нац. техн. ун-ту «Харків. політехн. ін-т». Х. : НТУ «ХІІІ», 2012. № 32. С. 72—76.

Рецензент Тишина Т.Г.